

77° CONGRESSO NAZIONALE ATI

LA SFIDA DEL NUOVO MODELLO ENERGETICO NAZIONALE TRA DECARBONIZZAZIONE, COMUNITA' ENERGETICHE E DIVERSIFICAZIONE DELLE FONTI

Bari, 12-14 settembre 2022

Biomass oxy-CO₂ gasification process for bio-methane production: an experimental and numerical activity

Roberto Gabbrielli¹, Federica Barontini¹, Stefano Frigo¹, Giacomo Flori^{1*}, Nicola Fratianni², Pietro Sica³

- 1. University of Pisa, Scuola di Ingegneria, Largo Lucio Lazzarino 1 Pisa (IT);
- 2. University of Molise, Dipartimento di "Bioscienze e Territorio", Contrada Fonte Lappone Pesche, Isernia (IT);
 - 3. Biosyn s.r.l., Via Alessandro della Seta, 20 Roma (IT).

* presenter, e-mail address: giacomo.flori@ing.unipi.it Tel: +39 050 2217042

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022

Introduction and Research motivations

- Air gasification of biomass is a well-known thermochemical process able to convert the biomass into a mixture of gases (syngas), mainly composed of CO, H₂, CO₂, CH₄ and N₂, plus small quantities of other hydrocarbon species;
- Depending on its composition, the producer gas can be conveniently transformed into chemicals, fuels or energy (both heat and power);
- The present study aims at investigating the feasibility to utilise the oxy-CO₂ gasification approach in order to obtain a nitrogen free syngas, which can be subsequently converted into Synthetic Natural Gas (SNG);
- CO₂ is needed in combination with O₂ to mitigate its reactivity, which can lead to excessive reaction temperatures, and also to increase the percentage of CO/H₂ in the syngas;

EXPERIMENTAL ACTIVITY

Experimental gasification plant located at the biomass research area of the University of Pisa:

Oxy-CO₂ gasification campaign of woody biomass.

NUMERICAL ACTIVITY

Development in Aspen Plus[®] environment of:

- Oxy-CO₂ gasification model;
- Methanation model.

The present research has been carried out in the framework of Project LIFE AUGIA "Sewage oxy-gasification for chemicals production" (LIFE19 ENV/IT/000669).

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022

Feed

Drying zone

Hearth zone

Grate

Ash pit

Experimental gasification plant

- > Small-scale: max thermal power of roughly 100 kW;
- Fixed-bed gasifier (downdraft);
- Max biomass consumption: 20 kg/h;
- The original plant, conceived for air gasification, had to be adapted for the oxy-gasification experimental activities;
- Technical/mechanical modifications in terms of feeding system layout, piping and gasifying agents distribution system inside the gasifier, this last to obtain more homogeneous conditions of reaction;
- Sealing gaskets for high temperatures;
- Well instrumented (flow meters and temperature/pressure sensors).

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022

Experimental gasification plant: Layout

Bari, 12-14 settembre 2022

atri

Biomass characterization activity

Analytical parameters of woody biomass

- > moisture content;
- volatile matter (VM) and fixed carbon (FC);
- > ash content;
- elemental content of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N);
- heating value (HV).

	Proximate Analysis				Ultimate Analysis				LHV
FEEDSTOCK	Moisture	VM	FC	Ash	С	Η	Ν	0	LHV
	(wt %,	(wt %,	(wt %,	(wt %,	(wt %,	(wt %,	(wt %,	(wt %,	(MJ/kg,
	ar)	dry)	dry)	dry)	dry)	dry)	dry)	dry)	dry)
Fir pellet	6.83	84.14	15.38	0.47	49.88	6.05	0.07	43.53	18.78

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022

Preliminary experimental activities

Check list tests

- plant control logic;
- correct running of all the sensors/devices;
- recording system;
- cold leak;

hot leak.

START-UP METHOD

Start:

- cold;
- ignition with air.

After roughly 1h:

- stable operating condition;
- 800-900°C in the reaction zone.

Switch to **oxy-CO₂ gasification**:

- stop air inlet;
- open gradually O₂;
- introduce also CO₂ to mithigate the temperatures.

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022

Experimental activities: oxy - CO₂ gasification

INPUT

Different operating conditions in terms of:

- \succ CO₂/O₂ flow rate ratio;
- \succ CO₂/Biomass mass flow rate ratio;
- Gasifyng agent flow rate.

OUTPUT

- Pressure and temperature values were monitored and recorded;
- Syngas composition was monitored using an Agilent 3000 micro-GC;
- Syngas volume flow rate;
- > Mean values for all the measured parameters were calculated for each operative condition.

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022 Biomass consumption

Biomass oxy-CO2 gasification process for bio-methane production: an experimental and numerical activity

Th. Power Syngas

Th. Power Biomass

8

CGE =

Experimental activities: oxy - CO₂ gasification

OUTPUT RESULTS

Syngas Composition

Equivalence ratio significantly affects the syngas composition:

CO₂ exhibits an increasing trend as ER increases, while CO and H₂ exhibit a decreasing one;

The substitution of air with a O_2/CO_2 mixture increases considerably the molar fraction of CO and H₂ in the syngas.

Experimental activities: oxy - CO₂ gasification

Syngas LHV CGE 75 9,0 • CO2/Biomass = 0.5 8,5 70 ▲ CO2/Biomass = 0.75 CO2/Biomass = 1 8,0 65 CO2/Biomass = 1.3 7,5 • CO2/Biomass = 1.5 60 ▲ CO2/Biomass = 1.7 7,0 CGE [%] [Em0,5 [EmN/fW] NH7 5,5 • CO2/Biomass = 0.5 ▲ CO2/Biomass = 0.75 45 CO2/Biomass = 1 40 CO2/Biomass = 1.3 5,0 • CO2/Biomass = 1.5 35 4,5 ▲ CO2/Biomass = 1.7 30 4,0 35 ER [%] 25 30 40 45 50 20 25 30 40 45 50 20 ER [%]³⁵

OUTPUT RESULTS

> The LHV of the produced syngas decreases with an increase in ER: beneficial effect of lower ER values;

Satisfying values of the CGE were obtained.

Gasification modelling activity: Description

Gasification modelling activity: Description

The gasifier has been simulated using different blocks:

Bari, 12-14 settembre 2022

	Heterogeneous reactions	
R1	$\begin{array}{l} C_{(s)} + (\alpha + 2)/(2\alpha + 2) \ O_{2(g)} \rightarrow \alpha/(\alpha + 1) \ CO_{(g)} + 1/(\alpha + 1) \ CO_{2(g)} \\ + (110.53 \ \alpha + 393.5)/(\alpha + 1) \ kJ/mol \end{array}$	Char Combustion
R2	$C_{(s)} + CO_{2(g)} \rightarrow 2 CO_{(g)} - 172 kJ/mol$	Boudouard
R3	$C_{(s)} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)} - 131 \text{ kJ/mol}$	Water-gas
R4	$C_{(s)} + 2 H_{2(g)} \rightarrow CH_{4(g)} + 75 \text{ kJ/mol}$	Methanation
	Homogeneous reactions	
R۶	$CO_{(g)} + 0.5 \ O_{2(g)} \rightarrow CO_{2(g)} + 283 \ kJ/mol$	CO combustion
R6	$H_{2(g)} + 0.5 \ O_{2(g)} \rightarrow H_2O_{(g)} + 242 \ kJ/mol$	H ₂ combustion
R 7	$CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)} + 41 \text{ kJ/mol}$	Water gas shift
R8	$CH_{4(g)} + H_2O_{(g)} \leftrightarrow CO_{(g)} + 3 H_{2(g)} - 206 \text{ kJ/mol}$	Steam-methane reforming
R۹	$CH_{4(g)} + 1.5O_{2(g)} \rightarrow CO_{(g)} + 2H_2O_{(g)} + 517 \text{ kJ/mol}$	Methane partial- oxidation
R10	$C_{6}H_{6(g)} + 7.5 \ O_{2(g)} \rightarrow 6 \ CO_{2(g)} + 3 \ H_2O_{(g)} + 3169 \ kJ/mol$	Oxidation of benzene
R11	$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)} + 804 \text{ kJ/mol}$	Methane oxidation

INTRODUCTION

EXPERIMENTAL

CONCLUSIONS

Gasification modelling activity: Validation & Results

- Using two experimental conditions, a tuning of the model has been carried out in order to limit its estimation error of the molar flow of the main syngas components (H₂, CO, CO₂ and CH₄);
- Best performances of the gasifier can be obtained when a lower amount of CO₂ is used;
- \succ The maximum of the CGE is reached for higher values of ER increasing the CO₂;
- The quantity of CO₂ largely affects the dilution of the syngas and therefore its temperature: it is important for structural limits of the materials.

Methanation modelling activity: Description

The syngas from the gasification system can feed a methanation plant to produce CH₄ enriched stream.

Main reactions

Water-shift reactor: $CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)}$

Sabatier reactor: $CO_{2(g)} + 4H_{2(g)} \leftrightarrow CH_{4(g)} + 2H_2O_{(g)}$

- Four reactors with intermediate heating removal systems;
- > Activated metallic catalysts (Nickel).

77° Congresso Nazionale ATI Bari, 12-14 settembre 2022

Results

Methanation modelling activity: Results

The syngas from the gasification system can feed a methanation plant to produce CH_4 enriched stream.

Bari, 12-14 settembre 2022

 \succ The specific production of CH₄ has a trend which is similar to the CGE;

Best performances of the gasifier can be obtained when a lower amount of CO₂ is used.

Conclusions

- Feasibility of the oxy-CO₂ biomass gasification approach;
- Satisfying experimental results: LHV ~ 7 MJ/Nm³ and CGE_{max} ~ 70%;
- Numerical gasification results: high performances when the CO₂ amount is lowered in accordance with the temperature limits due to the structural integrity of the equipment;
- Optimal condition: ER ~ 32%;
- Numerical methanation results: best performances when the CO₂ amount is lowered and ER not so high;
- Max production of methane: ~ 20 kg_{CH4} / 100 kg_{biomass};
- Under the economic point of view, oxy-CO₂ gasification can be interesting if utilised in combination with elettrolitic plants and CO₂-capture system.

Future Activities

- Execution of tests using steam as gasifying agent, substituting partially or completely the CO₂;
- Co-gasification of woody biomass with waste matrices (agro-industrial wastes, sewage sludges, ..).

THANKS FOR YOUR ATTENTION

Ing. Giacomo Flori

Email: giacomo.flori@ing.unipi.it

Tel: +39 050 2217042

UNIVERSITÀ DI PISA

Scuola di Ingegneria

